

Math 565: Functional Analysis

Lecture 06

Examples (continued).

(b) Let (X, μ) and (Y, ν) be σ -finite measure spaces and let $K: X \times Y \rightarrow \mathbb{C}$ be $\mu \times \nu$ -measurable. Suppose $\exists C_1, C_2 > 0$ such that $\|K(\cdot, y)\|_{L^1(\mu)} \leq C_1$ for a.e. $y \in Y$ and $\|K(x, \cdot)\|_{L^1(\nu)} \leq C_2$ for a.e. $x \in X$. Then for each $1 \leq p \leq \infty$, $T_K: L^p(\nu) \rightarrow L^p(\mu)$ defined by

$$T_K f(x) := \int K(x, y) f(y) d\nu(y)$$

is bdd linear transformation with $\|T_K\| \leq C_1^{\frac{1}{p}} C_2^{\frac{1}{q}}$, where q is the conj. exp. of p . This was shown in HW.

Important special case: convolutions. Let $g \in L^1(\mathbb{R}^d, \lambda)$ and set $K(x, y) := g(x-y)$. Then $\|K(\cdot, y)\|_1 = \int |g(x-y)| d\lambda(x) = \int |g(x)| d\lambda(x) = \|g\|_1 < \infty$, by the translation invariance of λ . Similarly, $\|K(x, \cdot)\|_1 = \int |g(x-y)| d\lambda(y) \stackrel{\text{transl. inv.}}{=} \int |g(-y)| d\lambda(y) \stackrel{\text{invariance under mult by } -1}{=} \int |g(y)| d\lambda(y) = \|g\|_1 < \infty$. So $C_1 = C_2 = \|g\|_1$, hence we have that the transformation, for each $1 \leq p \leq \infty$, $T_K: L^p(\mathbb{R}^d, \lambda) \rightarrow L^p(\mathbb{R}^d, \lambda)$ given by

$$T_K f(x) := \int g(x-y) f(y) d\lambda(y)$$

is bdd linear and $\|T_K\| \leq C_1^{\frac{1}{p}} C_2^{\frac{1}{q}} = \|g\|_1^{\frac{1}{p} + \frac{1}{q}} = \|g\|_1$. This transformation is called the convolution by g .

We denote by $f * g(x) := \int g(x-y) f(y) d\lambda(y)$ and call this the convolution of f and g . Note that $f * g = g * f$, by the translation and mult. by -1 invariance of λ .

(c) Let $\mathcal{D}: C[0,1] \rightarrow C[0,1]$ be given by $f \mapsto f'$. If $C[0,1]$ is equipped with the norm $\|f\| := \max(\|f\|_u, \|f'\|_u)$, then $\|\mathcal{D}f\|_u = \|f'\|_u \leq \|f\|$, hence $\|\mathcal{D}\| \leq 1$, in fact $\|\mathcal{D}\| = 1$ because of $f(x) = x$. But if we took just the uniform norm on $C[0,1]$ (in particular, it wouldn't be a Banach space), then \mathcal{D} is unbdd. Indeed,

Let $f_n(x) := \sin(2\pi n x)$, then $Df_n(x) = 2\pi n \cos(2\pi n x)$ so $\|Df_n\| = 2\pi n \xrightarrow{n \rightarrow \infty} \infty$ while $\|f_n\| = 1$ for all n .

(d) Nonexample. Let X be any ∞ -dim normed vector space (e.g. $\ell^p(\mathbb{N})$, $\ell^p(\gamma, \nu)$, $\text{span}(e_n : n \in \mathbb{N})$ with $e_n \in \ell^2(\mathbb{N})$ standard, i.e. $e_n := \mathbb{1}_{\{n\}}$). By Zorn's lemma, taking a maximal independent set, there is a linear basis B for X , called Hamel basis. Since B is infinite, $\exists \{b_n\} \subseteq B$ of pairwise distinct vectors. To define a linear transf. it is enough to define it on B and extended uniquely. Define $T: X \rightarrow X$ by setting $Tb_n := n b_n$ and $T(b) = 0$ or anything else for $b \in B \setminus \{b_n\}$. Then T is linear but unbdd because $\|Tb_n\| = n \|b_n\|$.

(e) An example of bdd bijective lin. trans. with unbdd inverse. Let $X := \text{span}(e_n : n \in \mathbb{N})$, where $e_n := \mathbb{1}_{\{n\}} = (0, 0, \dots, 0, \underset{n}{1}, 0, 0, \dots)$. For any $1 \leq p \leq \infty$, X is a (normed) subspace of $\ell^p(\mathbb{N})$ exactly of vectors which have only finitely many nonzero coordinates. (In fact, X is dense in ℓ^p for $1 \leq p < \infty$.) Define a linear $T: X \rightarrow X$ uniquely by $T(e_n) := \frac{1}{n} e_n$. Then for any $v \in X$, $v = \sum_{n \in \mathbb{N}} d_n e_n$ so $\|Tv\|_p \leq \|\mathbb{1}\|_p \leq \|v\|_p$ so T is bdd. However, $T^{-1} e_n = n e_n$ hence T^{-1} is unbdd since $\|T^{-1} e_n\|_p = n \|e_n\|_p$.

$$Tv = T\left(\sum_{n \in \mathbb{N}} d_n e_n\right) = \sum_{n \in \mathbb{N}} d_n T e_n = \sum_{n \in \mathbb{N}} \frac{1}{n} d_n e_n.$$

Bounded linear functionals.

When a linear transformation is \mathbb{C} -valued, it is called a linear functional. Using Zorn's lemma, as in Example (d) above, we can get pathological linear functionals, so we only focus on bdd linear functionals. For a normed vector space X , denote by

$$X^* := B(X, \mathbb{C})$$

the space of all bdd linear functionals on X and call this the **dual** of X .

Examples.

(a) Let $1 \leq p \leq \infty$ and let q be the conj. exp. of p . Fix any measure space (X, μ) .

Fix $g \in L^q := L^q(X, \mu)$. Define $I_g: L^p \rightarrow \mathbb{C}$ by

$$f \mapsto \int f g \, d\mu.$$

Then by Hölder, $|I_g f| = |\int f g \, d\mu| \leq \|f\|_p \|g\|_q$, so $\|I_g\| \leq \|g\|_q$.

By taking $f := \frac{|g|^{q-1} \operatorname{sgn} g}{\|g\|_q^{q-1}}$, we see that (as before), $I_g f = \int f g \, d\mu = \frac{1}{\|g\|_q^{q-1}} \int |g|^q \, d\mu = \|g\|_q^q / \|g\|_q^{q-1} = \|g\|_q$, so $\|I_g\| = \|g\|_q$.

These I_g are bdd linear functionals and the map $L^q \mapsto (L^p)^*$ by $g \mapsto I_g$ is a linear isometry. We will show that for $1 \leq p < \infty$, this is actually surjective, i.e. an isometric isomorphism.

(b) Fix a measurable space (X, \mathcal{B}) . Fix a (finite) complex measure ρ on (X, \mathcal{B}) .

Recall that putting $\mu = |\operatorname{Re} \rho| + i|\operatorname{Im} \rho|$, we have $\rho \ll \mu$ so $\forall B \in \mathcal{B}$,

$$\rho(B) = \int \frac{d\rho}{d\mu} \, d\mu$$

and $|\rho|(B) = \int \left| \frac{d\rho}{d\mu} \right| \, d\mu = \sup_{|\varphi| \leq 1} \left| \int \varphi \, d\rho \right|$, so $\|\rho\|_{TV} = \sup_{|\varphi| \leq 1} \left| \int \varphi \, d\rho \right|$. (*)

Let $B(X, \mathcal{B})$ denote the space of bdd \mathcal{B} -measurable functions with uniform norm. Then $B(X, \mathcal{B})$ is a closed subspace of $B(X)$ of all bdd functions with the uniform norm (since \mathcal{B} -meas. functions are closed under limits), hence $B(X, \mathcal{B})$ is a Banach space. Define $I_\rho: B(X, \mathcal{B}) \rightarrow \mathbb{C}$. This is a linear functional and by (*), we have $f \mapsto \int f \, d\rho$

$$\|I_\rho\| = \sup_{\|\varphi\|_\infty \leq 1} \left| \int \varphi \, d\rho \right| = \sup_{|\varphi| \leq 1} \left| \int \varphi \, d\rho \right| = \|\rho\|_{TV} < \infty,$$

and this sup is achieved.

Thus, the space $M(X, \mathcal{B})$ of all complex measures on (X, \mathcal{B}) isometrically

embeds into $B(X, \mathcal{B})^*$.

- Now let X be a Polish space (e.g. $[0,1]$, \mathbb{R} , $(0,1)$, $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, $\mathbb{R}^{\mathbb{N}}$) and $\mathcal{B} := \mathcal{B}(X) :=$ the Borel sets. In particular all finite measures on X are regular (i.e. approximable from above by open and from below by closed sets) and tight (i.e. approximable from below by compact sets). Restricting I_p to $BC(X) :=$ the space of bdd continuous functions, we still have that I_p is linear and $\|I_p\| \leq \|p\|_{TV}$. We show that actually $\|I_p\| = \|p\|_{TV}$ by approximating every \mathcal{B} -measurable $|\psi| \leq 1$ with bdd a bdd cont. func. in $L^1(X, |\psi|)$. Indeed, using regularity, one can show that $BC(X)$ is dense in $L^1(X, |\psi|)$ in the L^1 -norm (HW), so letting $|\psi| \leq 1$ be a \mathcal{B} -measurable function with $|I_p \psi| = \|p\|_{TV}$ and $\varepsilon > 0$, take $\tilde{\psi} \in BC(X)$ with $\|\psi - \tilde{\psi}\|_{L^1(|\psi|)} < \varepsilon$, so $|I_p \tilde{\psi}| \approx |I_p \psi| = \|p\|_{TV}$.
Thus, again, $M(X, \mathcal{B})$ isometrically embeds into $BC(X)^*$.

Caution. Unfortunately, even $BC(X)^*$ is much larger than $M(X, \mathcal{B})$, it also contains all finitely additive measures on \mathcal{B} , including all ultrafilters on \mathcal{B} .

- To get that $M(X, \mathcal{B})$ is all of the dual, we need to take a smaller closed subspace of $BC(X)$, namely,
 $C_0(X) := \{f \in BC(X) : f \text{ vanishes at } \infty\}$,
where we say that $f: X \rightarrow \mathbb{C}$ vanishes at ∞ if $\forall \varepsilon > 0 \ \exists |f| \geq \varepsilon$ is compact.
We need to further assume that X is locally compact. Then indeed, $M(X, \mathcal{B}) \cong C_0(X)^*$ and this is known as the Reisz representation theorem.